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I. Phys.: Condens. Matter 6 (1994) 7075-7084. printed in the UK 

Application of the connected-moments expansion to the S = 
Heisenberg antiferromagnet 

K C Lee and C FLo 
Depamneni of Physics, The Chinese University of Hong Kong, Shsin, New Territodes, Hong 
Kong 

h i v e d  1 March 1994, in final form 9 May 1994 

AbstracL h this paper we have applied the method of mnnected-moments expansion (om) 
to investigate the ground state of the spin-half (S = f) anisotropic Heisenberg antiferromagnet 
for linear chain, honeycomb, square. simple cubic and body-centred cubic lattices. For the w e  
of isotropic exchange intendon, a detailed comparison has shown good agreement between 
the CMX ~ e ~ u l r S  and those obtained by other mthods. The convergence of the am is fairly 
rapid, and becomes better as the coordination number increases or the anisompy parameter of 
exchange interaction decreases. Hence the om seems to be a practical tool for calculating the 
ground-state eaergy of a spin system since only the second- or thirdader estimation will be 
needed in Xhd pI%tiCK 

1. Introduction 

In the past few decades the magnetic properties of an anisotropic quantum antiferromagnet 
have been extensively studied both theoretically and experimentally [I]. Here the anisotropy 
means either anisotropic exchange interactions or single-ionic-type anisotropy. Despite the 
apparent simplicity of the system, exact results are scarce. For instance, in the case of the 
isotropic spin-half (S = 4) Heisenberg antiferromagnet, the exact ground state is known for 
the linear chain only, whereas beyond one dimension the exact nature of the ground state 
remains unlcnown [2,3]. In recent years the interest in the quantum antiferromagnetic models 
has been further intensified by the discovery of the high-T, superconductivity and Anderson's 
suggestion that there is a possible connection between the ground state of the high-T, 
superconducting materials and the two-dimensional S = 4 Heisenberg antiferromagnet 
14.51. There have been many investigations, both analytical 16111 and numerical 112,131, 
on the ground-state properties of the S = $ system for various lattices. A pioneering 
analytical work known as the linear spin-wave (LSW) theory was given by Anderson and 
has proved to be quite successful in predicting the properties of the ground state (and even 
low-lying excited states) 161. The LSW theory takes only the linear part under the Holstein- 
F'rimakoff transformation [14], and then a diagonalized Hamiltonian is obtained. In order 
to improve the result of LSW theory, one needs to resort to the perturbative series expansion 
[9,10, IS]. However, since the spin-wave theory is an expansion in powers of I/(zS), z 
being the coordination number, it is natural to raise doubts about the convergence of this 
expansion for low-spin and low-dimension (low-z) systems. 

Recently, a new non-perturbative analytic method, the connected-moments expansion 
(m), for calculating ground-state energies of many-body systems, was developed by 
Cioslowski [16]. The method has been applied to various molecular Hamiltonians and is 
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able to provide promising results [17-191. The CMX was based on a theorem by Horn and 
Weinstein concerning the ground-state energy of a many-body system [ZO]. The theorem 
states that if 14) has non-zem overlap with the exact ground-state wave function of the 
system under consideraiton, then the function 

K CLee and C F Lo 

converges to the exact ground-state energy EO at the limit t + CO. The coefficients IX are 
connected moments of the Hamiltonian: 

In practice, one is never able to generate the whole t-series for F ( f ) ,  and has to rely on some 
method of exuacting EO ffom a finite number of terms of the t-expansion. It is clear that 
F ( t )  is a monotonically decreasing function o f t  since the derivative of F ( t )  with respect 
to t is equal to the negative of the expectation value of the operator (H - (H))’ .  Moreover, 
both F(t) and ZI scale linearly with N for any system of N independent particles, and thus 
both of them are size extensive. Owing to these properties, Cioslowski proposed that F ( t )  
can be written in the form 

m 

F(t)  = EO -!+ c A j  exp(-bjt) 
j-1 

bj =- 0. 

Next, by considering the following approximant to F(t):  

(3) 

and by matching the power series of equation (1) and equation (4) at low order, one obtains 

m 

xAjbiXf’=Ik+2 ~ k = 0 , 1 , 2  ,..., 2m-1 
j=1 

and 
m m 

Fm(0) = 11 = Eo + X A j  + Eo = 11 - CAj = 11 f Eg;. (6) 
j=l  j=1 

Then the remaining work is to find an expression relating Eg; and the connected moments 
I k .  To achieve this, one introduces the function 

so that the coefficients Aj, bj can be determined by matching the low-order terms in the 
power series of equation (7) with those of 

Ajbj 
fm(0 = - 

j=1 1-b i t ’  
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It is not difficult to show that the solution for ~ f , ( f )  can be conveniently written as the 
quadratic form 

fm( t )  = x,u,'x: (9) 

where X, is the row vector (Z2,Z3,Zd, . . . , Im+l), X: the transpose of X, and U;' the 
inverse of the matrix U, defined by (U,,,)jj = Zj+j - t4+j+l. Taking the limit t + 00 for 
the expression ffm(t), one finds the EC: 

(10) 

where T;l is the inverse of the matrix T,,, defined by (T,) i j  = Zi+j+l .  As a result, the CMX 
series for calculating the ground-state energy EO is given by [16,21] 

E,!:; = lilitfm(t) = -X,,,Ti'X: 

E,, = Z, - lim X.T;'X;. 
n - t m  

This CMX method has the property that the CMX series truncated at any order is always size 
extensive, and thus appears to be very attractive for many-body calculations. However, the 
applicability of the CMX method for ground-state energy is never granted a priori, and has 
to be carefully investigated for each Hamiltonian under consideration. 

In the present work we adapt the CMX technique to the spin-lattice models and investigate 
its validity for this class of Hamiltonians. The specific lattice problem we have in mind is 
the S = $ Heisenberg antiferromagnet. This model has been extensively studied and thus 
should provide a good testing ground for the CMX method. We calculate the ground-state 
energy of the s = i antiferromagnet for various lattices using the CMX series as well as 
investigating the convergence of these CMX results. So far as we know, the c m  method 
has not yet been applied to such systems despite the long history of attempts to improve 
on available methods for these lattice problems. The outline of this paper is as follows. In 
the next section we apply the CMX method to the S = i Heisenberg antiferromagnet for 
various lattices such as linear chain, honeycomb, square, simple cubic and body-centred 
cubic lattices. Numerical results are then discussed in section 3. 

2. Theory 

The Hamiltonian of the S = $ Heisenberg antiferromagnet with anisotropic exchange 
interaction is given by 

where the spin-raising and lowering operators are defined by S* Sx rf: iSY. Here 
J is a positive quantity representing the antiferromagnetic exchange interaction strength, 
R is the anisotropy parameter varying between zero and unity, and denotes the 
summation over all nearest-neighbour pairs. Anticipating antiferromagnehsm we may 
rewrite the Hamiltonian by performing a rotation of the spin quantization axis at each 
site of one sublattice ('down' sublattice) into the direction of the local mean field. After 
the transformation the Hamiltonian becomes . 
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Table 1. Comparison of the first-order CMX ~ s u l f s  with LSW theory. 

Mce Y f = r/[2(r - 111 
Linear chain 0.726 1.0 
Honeycomb - 0.75 
SqUare 0.632 0.667 
sc 0.582 0.6 
B E  0.584 0.571 

In this new basis the Hamiltonian HO is just the Hamiltonian of the ferromagnetic Isin model 
and its ground state 140) is well known, i.e. the state with all spins 'up': I+o) = n(=, I l . ) i .  
It is, therefore, natural to choose the state I+o) as our starting state of the CMX for the 
Hamiltonian H .  In fact, we believe that when R is small, the state 140) should be fairly 
close to the exact ground state. Once the starting state is fixed, it is straightforward, though 
tedious, to calculate various connected moments Ik (@o1Hkl&). of H (either by hand 
or by computer), which in turn enable us to evaluate the ground-state energy using the 
CMX series. Since the calculations are quite lengthy, the details are not discussed here, and 
numerical results are presented in the next section. In the following we shall, however, 
discuss in more detail the first few terms of the CMX for the case of isotropic exchange 
interaction and compare the results with the LSW theory. 

I$ 

The first three connected moments of H for the isotropic case are given by 

i1 = -; J Z N  (14) 

= ; J ~ Z N  (15) 

(16) 

Consequently, the zeroth- and first-order estimations of the ground-state energy of H are: 

1 3  = 4 J'z(z - 1)N. 

= I ~  = - L J ~ N  8 (17) 

According to Anderson's LSW theory, a rough estimation of the ground-state energy is given 
by 161 

Thus comparing equation (18) with equation (19) suggests that within the first-order 
estimation the CMX is able to recover the LSW results, at least for large z. More precise 
LSW results are given in the following form: 

The value corresponding to y in our first-order CMX estimation is 7 z/ [2(z  - 1)l. For a 
further comparison we tabulate the values of y and $j for various z in table 1. It is clear 
that y and are in fairly good agreement, at least for large z.  
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3. Numerical results 

We have calculated the connected moments Ik of the S = 4 anisotropic Heisenberg 
antiferromagnet up to k = 11 for various lattices, and they are listed in the appendix. 
In terms of these connected moments we can derive the CMX of the ground-state energy 
per spin up to the fifth order. In tables 2-6 the numerical results for various lattices with 
different R are tabulated. From the numerical data it is observed that for small values of R 
the CMX shows a convergent pattern and limits can be reached for quite a low order of the 
expansion. This is actually not surprising because the N6el state is taken to be the starting 
state for the expansion, and it is supposed to be fairly close to the exact ground state when 
R is small. 

Table 2. CMX results for the linear chain. 
R ~ El') Eh*) E ~ I  ~ E!) 

0.1 -0.25 ~-0,2525 -0.252486 -0.252493 -0.252494 
0.2 -0.25 -0.26 -0.259780 -0.259857 -0.259915 

0 

0.3 -0.25 -0.2725 
0.4 -0.25 -0.29 
0.5 -0.25 -0.3125 
0.6 -0.25 -0.34 
0.7 -0.25 -0.3725 
0.8 -0.25 -0.41 
0.9 -0.25 -0.4525 
1.0 -0.25 -0.5 

-0.271416 -0.271 725 -0.271 175 
-0.286697 -0.287557 -0.287468 
-0.304795 -0.306765 -0.306764 
-0.324844 -0.328801 -0.328703 
-0.346031 -0.353216 -0.352659 
-0.367647 -0.379679 -0.378071 
-0.389 116 -0.407971 -0.404464 
-0.41 -0.437965 -0.431 436 

EA') 

-0.252494 
-0259 898 
-0.271 952 
-0.288071 
-0.307464 
-0.329 509 
-0.353 682 
-0.379516 
-0.406639 
-0.434784 

Table 3. cuy results for the honeycomb laitice 

R EAo) E;) E:) Ec?) 0 E!) Eh* 

0.1 -0.375 -0.376875 -0.376871 -0.376872 -0.376872 -0.376872 
0.2 -0.375 -0.3825 -0.382434 -0.382453 -0.382457 -0.382457 
0.3 -0.375 -0.391 875 -0.391 543 -0.391 629 
0.4 -0.375 -0.405 -0.403966 -0.404215 
0.5 -0.375 -0.421 875 -0.419397 -0.419970 
0.6 -0.375 -0,4425 -0.437479 -0.438632 
0.7 -0.375 -0.466875 -0.457 817 -0.459931 
0.8 -0.375 -0.495 -0,480000 ~-0.483611 
0.9 -0.375 -0.52688 -0.503620 -0.509443 
1.0 -0.375 -0.5625 -0.528285 -0.537228 

-0.391 674 
-0.404743 
-0.419658 
-0.438 508 
-0.459 898. 
-0.483611 
-0.509365 
-0.536 879 

-0.391 662 
-0.404341 
-0.420288 

~-0.439222 
-0.460 806 
-0.484725 
-0.510709 
-0,538 521 

For larger values of R the CMX appears to converge more slowly due to the quantum 
fluctuations. Since the quantum fluctuations will be more dominant in low dimensions, 
we may expect better CMX results.for higher dimensions. In fact, this can be easily seen 
by inspecting the numerical data of the isotropic case for various lattices. In table 7 the 
ground-state energies for the one, two- and threedimensional lattices obtained by various 
methods are listed. It can be seen that our CMX results agree with them fairly well, especially 
in the threedimensional case, and that even the second-order CMX is sufficient to give a 
reasonable estimate of the ground-state energy. This suggests that the first few orders of 
the CMX have already recovered a large portion of the ground-state energy. 
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Table 4. c m  results for the square lanice. 

R EA’) EA’) E?) Ei3) E:) E? 
0.1 -0.5 -0,501 667 -0.501 667 -0.501 667 -0501 667 -0.501 667 
0.2 -0.5 -0.506667 -0506645 -0.506664 -0506665 -0.506665 
0.3 -0.5 -0.515000 -0.514893 -0.514977 -0514995 -0.514994 
0.4 -0.5 -0.526667 -0.526329 -0.526567 -0526666 -0.526650 
0.5 -0.5 -0.541 667 -0.540 848 -0.541 368 -0541 745 -0.541 635 
0.6 -0.5 -0.560000 -0.558318 -0.559283 -0560656 -0.559956 
0.7 -0.5 -0.581 667 -0,578581 -0.580 194 -0592200 -0.581 635 
0.8 -9.5 -0.606667 -0.601463 -0.603969 -0.598668 -0.606726 
0.9 -0.5 -0.635000 -0,626772 -0.630466 -0.627537 -0.635352 
1.0 -0.5 -0.666667 -0.654303 -0.659536 -0.657394 -0.667808 

Table 5. cm results for the simple cubic lanice. 

0.1 -0.75 -0.7515 
0.2 -0.75 -0.756 
0.3 -0.75 -0.7635 
0.4 -0.75 -0.774 
0.5 -0.75 -0.7875 
0.6 -0.75 -0.804 
0.7 -0.75 -0.8235 
0.8 -0.75 -0.846 
0.9 -0.75 -0.8715 
1.0 -0.75 -0.9 

-0.751499 -0.751500 
-0.755991 -0.755999 
-0.763454 -0.763493 
-0.773854 -0.773973 
-0.787145 -0.787421 
-0.803266 -0.803 806 
-0.822147 -0.823091 
-0.843704 -0.845226 
-0.867 846 -0.870 156 
-0.894470 -0.897816 

-0.751 500 
-0.755999 
-0.763497 
-0.773995 
-0.787502 
-0.804045 
-0.823 699 
-0.846677 
-0.873705 
-0.909082 

-0.751 500 
-0.755 999 
-0.763497 
-0.773 993 
-0.787490 
-0.803 995 
-0.823 520 
-0.846081 
-0.871 700 
-0.900393 

Table 6. cm results for the bodysenwed cubic lattice. 

R E r )  E t )  E r )  E f )  E t )  E$) 

0.1 -1.0 -1.001429 -1.001429 -1.001429 -1.001429 -1.001429 
02 -1.0 -1.005714 -1.005713 -1.005722 -1.005722 -1.005722 
0.3 -1.0 -1.012857 -1.012853 -1.012897 -1.012898 -1.012898 
0.4 -1.0 -1.022857 -1.022843 -1.022981 -1.022990 -1.022989 
0.5 -1.0 -1.035714 -1.035679 -1.036017 -1.036049 -1.036047 
0.6 -1.0 -1.051429 -1.051356 -1.052055 -1.052155 -1.052147 
0.7 -1.0 -1.07 -1.069866 -1.071156 -1.071423 -1.071396 
0.8 -1.0 -1.091429 -1.091200 -1.093393 -1.094031 -1.093950 
0.9 -1.0 -1.115714 -1.115348 -1.118847 -1.120258 -1.120026 
1.0 -1.0 -1.142857 -1.142299 -1.144606 -1.150562 -1.149919 

In summary, we have applied the method of connected-moments expansion to investigate 
the ground state of the S = 4 Heisenberg antiferromagnet. The connected-moments 
expansion of the ground-state energy up to the fifth order has been performed for linear 
chain, honeycomb, square, simple cubic and body-centred cubic lattices. For the case of 
isotropic exchange interaction, a detailed comparison has shown goad agreement between 
the CMX results and those obtained by other methods; in fact, the firstader CMX estimation 
may be compared with the linear spin-wave theory of Anderson. The convergence of 
the CMX is fairly rapid, and becomes better as the coordination number increases or the 
anisotropy parameter of exchange interaction decreases. Besides, since our choice of the 
N6el state as the starting state is dictated primarily by our desire to use a calculationally 
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Table 7. Gmund-state energy per spin from other methods for the isotmpic Heisenberg 
antifemamagmt 

Method e"1.1 

Linear chain 
Exau mult p.31 
CMX result 

-0.443 15 
-0.434784 

Honeymmb 
Barkowski (variational) [81 -05295 
Kim and Hong (projection technique) [U] -0.5409 
CMX result -0538521 

square lattice 
Anderson (spin waves) [6] -0.658 
Bullock (peaurbational) [U] -0.666 
Sin& (series expansion) [U] -0.6696 
Barkowski (variational) I81 -0.659 
Kim and Hong (projection technique) [221 -0.6674 
Trivedi and Ceperley (GFMC) 1131 -0.6692 
Liu and Manousakis (wc) 1261 -0.6637 
Tang and Hirsch (W diagodizatiion) [27l -0.672 
CMX result -0.667 808 

s i 1 e e u b i c  
Anderson (spin waves) [6] 
Bullock (perturbational) [23] 
Barkowski (variational) [8] 
Kim and Hong (projection technique) [221 
CMX result 

Body cenved cubic 
Kubo (spin waves) ['U] 
paninello and Ami (perturbational) [IO] 
Batikowski (variational) [8] 
Kim and Hong (projection technique) [22] 
CMX result 

-0.896 
-0.900~ 
-0.899 
-0.9009 
-0.900393 

-1.151 
-1.1496 
-1.153 
-1.148 
-1,149919 

manageable starting state and may not be a good one at all, especially for the isotropic 
case, one may improve the convergence of the CMX by using a better starting state, e.g. the 
Gutzwiller-type trial wave function. Furthermore, according to OUT calculations, the first 
few orders of the CMX have already recovered a large portion of the sound-state energy. 
Hence the CMX seem to be a practical tool for calculating ground-state energy of a spin 
system since only the second- or thi-order estimation will be needed in actual practice. 

Appendix 

AI.  Linear chain 
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4 = -{(3R4-2R2)J4N 

15 = - i (7R4 - R2)J5N 

1.5 = i(20R6 -43R4+2RZ)J6N 

17 = i(213R6-110R4+2R2)J7N 

18 = -&(595R8-2684R6+510R4-4R2)J8N 
I9 = -1 ,(2831 R8 - 3279R6 + 279R4 - R2) J9N 

40 = Q(7812R'0-60723R8+27584R6- 1179R4+2R2)J10N 

111 = i (233 141R" -486 l10R8 + 105307R6 - 2438R4 +2R2)J1'N. 

A 2  Honeycomb 

= - $ I N  
I ~ = B R  3 2 2  J N 

& = i R  3 2 3  J N 

Iq=-&(15R4-24R2)J4N 

1s (3R2 - 9R4)JSN 
I6 = i(93R6 -462R4+48R2)J6N 

17 = a(2019R6 - 2484R4 + 96R2)J7N 

I s =  -&(10707R8- 106656R6+48432R4-768R2)J8N 

Ig = -$(75731R8-69249R6+ 13887R4-96R2)J9N 

[io= ~(557919R'0-9207228R8+9965016R6-979536R4+3072R2)J'0N 

h i  = ~(16648221R'0-78284160R8+40708890R6-2101 176R4+3072R2)J"N. 

A3. Square lattice 

= - ~ J N  2 

I, = L R ~ J ~ N  2 

13=iR 3 2 3  J N 

4 = --$(5R4 - 18RZ)J4N 

1s = -i(41R4-27R2)J5N 

I6 = $(64R6 - 861R4 + 162R2)J6N 

I7 = -$(2499R6 - 7390R4 +486R2)J7N 

Is=-i(3671R8- 113684R6+113250R4-2916RZ)J8N 

19 = -f(66681R8 -492845R6+202121R4-2187R2)J9N 

h o  = Q(186561R"- 10713882R8+28940408R6-5507562R4+26244R2)J10N 

111 = ,i(7 948 116R" - 157774710R8+ 189 874 417R6 - 18 163750R4 C39 366R')J"N. 
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A4. Simple cubic 

rI = -2 JN 4 

Zz=zR 3 2 2  J N 

Z 3 = 7 R  15 2 J 3 N 

4 = -i(21R4 - 150R2)J4?? 

Zs -f(297R4 - 375R2)JSN 

I6 = i(516R6- 10773R4+3750R2)J6N 

17 = i(30963R6 - 159738R4+ 18750R2)J7N 

18=-&(70137R8 -2306820R6+4226130R4- 187500R2)J8N 

Zg -a(1666521Rs - 16931289R6+13005297R4-234375R2)J9N 

I i o =  Q(9494817R"- 199479885R' +855724416R6 -305026293R4 

+ 2343750R2)J10N 

III = i(1172463 867R" - 9 429456 642R8 + 19 481 91 1 317R6 - 3 457 012 338R4 

+ 11 718 750R2) J"N. 

A 5  Body centred cubic 

ZI = - J N  

z2 = R ~ J ~ N  

I3 = 7RZJ3N 

4 -f(3R4 - 98R2)J4N 

Zs = (-103R4 + 343R2)J5N 

16 = f(128R6 - 6571R4 + 4802R2) J6N 

Z7 = 5(9747R6- 154994R4+33614R2)J7N 

18 = a(7511R8 + 1 150340R6 - 6233550R4+470596R2)J8N 

19 = (-39203R8+ 14076045R6 -28456359R4+823543R2)J9N 

Zio = a(706425R" - 92 107566R' +2331013288R6 - 1951 383462R4 

+ 23059204R2)J'0N 

III = ~(788839519R1' - 10493722636R8+ 84438667826R6 - 32028742612R4 

+ 161414428R2)J11N. 



7084 

References 

K CLee and C F L o  

Wry0 N 1990 Phose TrMsitionr 28 133 
Bethe H A 1931 Z Phys. 7l205 
Hulthen L 1938 Ark Mar. Asnon. Fys. A 26 1 
Manousakis E 1991 Rev. Mad. Phys. 63 1 
Anderson P W 1987 Science 23.5 1196 
Anderson P W 1952 Phys. Rev. 86 697 
Marshall W 1955 Proc. R. Soc. A 232 48 
Davi H L 1960 Phys. Rev. 1u) 789 
Oguchi T 1963 J.  Phys. Chem S O U  24 1649 
Oimaa J and Belts D D 1978 Can. 3. Phys. 56 897 
Jullien R el d 1980 Phys. Rev. Len. 44 1551 
Bakowski R 1972 Phys. Rev. B 5 4536 
Arai T and Gwdman B 1967 Pkys. Rev. 15.5 514 
Paninello M and Arai T 1974 Phys. Rev. B 10 265 
Becker K W. Won H and Fulde P 1989 2. Phys. B 75 335 
Huse D A and Elm V 1988 P h y .  Rev. LctL 60 2531 
Liang S, Doucot B and Anderson P W 1988 Phys. Rev. Len. 61 365 
Trivedi N and Ceperley D M 1990 Phys Rev. B 41 4552 
Holstein T and Primakoff H 1940 Phys. Rev. 58 1048 
Kubo R 1962 3. Phys. Soc. Japan 17 11W 
Cioslowski J 1987 Phys. Rev. len. 58 83; 1987 Phys. Rev. A 36 374; 1987 Chem Phys. Left 136 515: 1987 

Phys. Rev. A 36 3441; 1987 Int 3. Qvmfum Chem.. Qua” Chcm Symp. 21 563 
Cioslowslii J 1987 Chem Phys. Len. 134 507 
Cioslowski J, K m s z  M, Surjan P R and Poirier R A 1987 Chem. Phys. Lett 138 516 
Toshida T and Iguchi K 1988 Chem Phys. Lett. 143 329; 1989 J. Chem Phys. 91 4249 
Hom D and Weinstein M 1984 Phys. Rev. D 30 1256 
Knowles P J 1987 Chem Phys. Len W 512 
Kim M and Hong J 1991 Phys. Rev. B 44 6803 
Bullock D L 1965 Phys. Rev. 137 1877 
Kubo R 1952 Phys. Rev. 87 568 
Sin& R R P 1989 Phys, Rev. B 39 9760 
Liu 2 and Manousakis E 1989 Phys. Rev. B 40 11 437 
Tang S and Hmch J E 1989 Phys. Rev. B 39 4548 


